Electrostatic Excitation for the Force Amplification of Microcantilever Sensors
نویسندگان
چکیده
This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.
منابع مشابه
Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملDesign and Production of a Pneumatic Moving Exciter for Determination of Vibration Behavior of Structures in Variable Frequencies
Determination and analysis of vibration behavior of structures for at least first few natural frequencies and mode shapes needs several sensors to be connected at different non node points and exciting the structure at one point. Other method for determination of first few mode shapes is to excite several points of the structure at once and sensing the response from one point. Both methods nee...
متن کاملAnalysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors
The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin...
متن کاملThe Effects of Excitation Signal on the Resolution of the Liquid Crystal Capacitive Chemical and Biological Sensors
In this paper excitation characteristics of the Liquid Crystal (LC) capacitive chemical and biological sensor are examined and the optimum frequency and voltage range for the sensor interface are introduced. Interdigitated capacitor has been used for the sensor capacitance measurement and two different molecular orientations, homeotropic and homogenous, have been considered. The LC sensor capac...
متن کاملApplication of Thau Observer for Fault Detection of Micro Parallel Plate Capacitor Subjected to Nonlinear Electrostatic Force
This paper investigates the fault detection of a micro parallel plate capacitor subjected to nonlinear electrostatic force. For this end Thau observer, which has good ability in fault detection of nonlinear system has been presented and governing nonlinear dynamic equation of the capacitor has been presented. Upper and lower threshold for fault detection have been obtained. The robustness of th...
متن کامل